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ABSTRACT 41 -

This paper is concerned with the kinetics of propagating phase

boundaries in a bar made of a special nonlinearly elastic material.

First, it is shown that there is a kinetic law of the form f = (s)

relating the driving traction f at a phase boundary to the phase

boundary velocity s that corresponds to a notion of maximum

dissipation analogous to the concept of maximum plastic work.

Second, it is shown that a modified version of the entropy rate

admissibility criterion can also be described by a kinetic relation

of the above form, but with a different p. Both kinetic relations are

applied to the Riemann problem for longitudinal waves in the bar.

1. Introduction. Recently [ 1], we considered a one-dimensional dynamical theory of an

elastic bar composed of a material which could undergo phase transitions. For the class of

materials considered in [11, the stress-strain relation is such that stress at first increases with

increasing strain, then decreases and finally increases again; the different branches of the

stress-strain curve are identified with different phases of the material. A propagating strain
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discontinuity in a bar composed of such a material can be either a shock wave or a phase

boundary, according to whether the particles separated by the discontinuity are of the same phase

or of distinct phases. In addition to the basic field equations and jump conditions associated with

momentum balance and kinematic compatibility, we imposed in [I the entropy admissibility

requirement that follows from the second law of thermodynamics at each propagating strain

discontinuity. In the form employed in [ 1], this requirement states that the product of the

velocity s of the discontinuity and an associated driving traction f must be non-negative: f s _ 0.

If, in contrast to the case treated in [1], the material of the bar is such that stress is a

montonically increasing, strictly convex or strictly concave function of strain, then phase

transformations cannot occur, and all propagating strain discontinuities are shock waves. For a

bar made of such a material, it follows from a result of Oleinik [2] that the Cauchy problem for

the associated field equations and jump conditions has at most one solution that fulfills the

entropy admissibility requirement; see [3] for a discussion of Oleinik's theorem and related

results. On the other hand, for materials such as those considered in [1] that do not satisfy these

conditions, the Cauchy problem need no longer have a unique solution, even with the entropy

admissibility requirement in force; see the remarks of Dafermos [4] in this connection. We view

this lack of uniqueness as arising from a constitutive deficiency in the theory, reflecting the need

to specify two additional pieces of constitutive information pertaining to phase boundaries: a

nucleation criterion for the initiation of a phase transition and a kinetic relation that controls the

rate at which the phase transition proceeds. The importance of nucleation and kinetics has long

been recognized in the materials science literature concerning phase transformations [5].

The form of the kinetic relation employed in [1] and to be used here is one in which the

driving traction is a materially-determined function of the velocity of the moving phase

boundary: f = (p(s). The nucleation criterion given in [1] specifies a critical level of driving

traction that signals the onset ul a phase transformation. We had previously explored the
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continuum-mechanical implications of such a kinetic relation and nucleation criterion in the

context of one-dimensional quasi-static motions [6]. A more general discussion of kinetic

relations for a thermoelastic material undergoing a thermomechanical process in a three

dimensional setting with inertia effects taken into account may be found in [7].

For a special material whose rising-falling-rising stress-strain curve is piecewise linear

(the "trilinear material"), we showed in [1] that, for the Riemann problem, the extent of lack of

unioueness of solution remaining after imposition of the entropy admissibility requirement is

precisely that needed to accommodate a nucleation criterion and a kinetic relation at phase

boundaries that propagate subsonically with respect to both phases. We also showed that, for

this special material, a kinetic relation cannot be prescribed at phase boundaries that move

supersonically with respect to the phase with lower sound wave speed.

In the present paper, we are concerned with two special kinetic relations of the form

f = qP(s). First, we introduce the maximally dissipative kinetic relation, which is based on a

notion of maximum dissipation analogous to the concept of maximum plastic work in the theory

of elastic-plastic solids [8, 9]. The second kinetic law to be discussed here is related to a special

selection criterion, to be described below, for singling out solutions to dynamical problems. We

study the implications of these kinetic relations for a Riemann problem for the trilinear material.

To address cases in which the stress fails to be a monotonically increasing function of

strain that is also strictly convex or concave, other workers in this area have sought to replace the

entropy admissibility requirement with various more discriminating conditions that would serve

to select solutions to the Cauchy problem. Among such selection criteria, perhaps the two that

are most often encountered in applications are the "viscosity-capillarity condition" studied by

Shearer [ 10, 11], Slemrod [ 12,13], Truskinovsky [ 14,15] and others, and variants of the "entropy

rate admissibility criterion" proposed by Dafermos [16,17] and investigated in connection with
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phase transitions by Hattori [18,19], James 120] and Pence [21]. For the trilinear elastic bar, the

relation between a selection criterion of the viscosity-capillarity type and the kinetics of phase

transitions was recently explored in [22], where it was shown that imposing this selection

criterion is equivalent to the prescription of a kinetic relation f = (p(s) with a particular choice of

(p. In the present paper, we show - again for the trilinear material - that the "entropy rate shock

admissibility criterion" stated by Dafermos in [17], if suitably modified, is also equivalent to a

kinetic relation of the form f = (p(s). The three kinetic response functions (p for the maximally

dissipative kinetic relation, the viscosity-capillarity condition and the modified entropy rate

shock admissibility criterion are all distinct.

It is important to emphasize that the entropy admissibility requirement f s _> 0 at strain

discontinuities follows from a fundamental physical principle and is thus applicable to all

materials. In contrast, selection criteria such as the viscosity-capillarity condition, the entropy

rate admissibility criterion and the maximally-dissipative kinetic relation do not enjoy this

universal status and thus can at best be constitutive statements that pertain to a particular

material or class of materials. Moreover, to qualify as a constitutive assertion, any such criterion

must not only be consistent with the entropy admissibility condition, but it must be a problem-

independent, local restriction that can be stated in terms of individual particles of the continuum

at hand. Kinetic relations of the form f = (p(s) meet these requirements and represent constitutive

statements that, for a given material, are applicable at all phase boundaries arising in any

boundary-initial-value problem in the theory of longitudinal waves in bars. The same is true of

the viscosity-capillarity condition and the modified entropy rate shock admissibility criterion.

In the next section we set out the basic field equations, jump conditions and the entropy

admissibility requirement. In Section 3 we describe the trilinear material and review the local

properties of strain discontinuities in the simplest one-dimensional theory of elastic bars. After

describing the notion of a kinetic relation at the beginning of Section 4, we introduce the local
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concept of maximum dissipation rate and deduce the corresponding maximally dissipative

kinetic relation. In Section 5, we consider a particular Riemann problem and, for given initial

data, we determine explicitly the set Q of all solutions of this problem that satisfy the entropy

admissibility condition. Each solution in this set involves a single phase boundary propagating

with a constant velocity s that is not determined by the initial data; indeed, Q comprises a

one-parameter family of solutions, parameter s. Sections 6 and 7 are respectively devoted to the

following two questions concerning Q: first, does imposition of the maximally dissipative kinetic

relation of Section 4 pick out a unique value of s, and hence a unique solution in Q, for the given

initial data? Second, for given initial data, is there a unique value of s, and hence a unique

solution, that maximizes the dissipation rate f s over the solutions in Qi? We show that, while the

answer to each of these questions is affirmative, the solutions selected by the two procedures are

in general different. In the present context, the selection criterion implicit in the second of these

two questions is equivalent to a modified version of the entropy rate shock admissibility criterion

of Dafermos [171.

Since the two kinetic relations to be discussed here refer to related but distinct notions of

maximum dissipation rate, we are confronted with some terminological pitfalls. To help avoid

these, we shall refer to the kinetic relation that mimics maximum plastic work as the maximally

dissipative kinetic relation. The second kinetic law we shall speak of as associated with the

modified entropy rate shock admissibility criterion. We shall consistently refer to the condition

that the entropy of a particle cannot decrease upon crossing a strain discontinuity (f s > 0) as the

entropy admissibility requirement.

2. Preliminaries. Consider an elastic bar of unit cross-sectional area occupying the

interval (..o,oo) in an unstressed reference configuration. In a longitudinal motion of the bar, the

particle located at x in the reference configuration is carried to the point x + u(x,t) at time t; the

displacement u is required to be continuous and to have piecewise continuous first and second
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derivatives on (-ao,oo)x[O,eo). At points (x,t) in space-time where u and u t exist, we let

'Y=Ux , v=u t  (2.1)

denote strain and particle velocity, respectively. In order to assure that the mapping

x -, x + u(x,t) be invertible at each t, we require that y(x,t) > -1. The stress o(x,t) is related to the

strain through

a = h(y), (2.2)

where the stress response function e is determined by the material. The mass density p of the

material in the reference configuration is taken to be constant.

At points where y and v are smooth, balance of linear momentum and the smoothness

properties of u require that

'(Y)YX" Pvt = 0, (2.3)

VX -Yt 0=0. (2.4)

If either y or v is discontinuous across the curve x = s(t) in the x,t-plane, the jump conditions

[[a]] =-p[Iv]] s , (2.5)

[[y]] s =-[[v]], (2.6)

must be satisfied, where for any function g(x,t), [[g]] = g(s(t)+,t) - g(s(t)-,t). The jump condition

(2.5) comes from the balance of linear momentum; (2.6) follows from the smoothness of u(x,t).

-6-
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The basic field equations and jump conditions (2.3)-(2.6) do not guarantee that the

instantaneous dissipation rate during a motion is non-negative. In order to assure this, one must

impose an additional requirement at each discontinuity. To this end, let

Y
W(y) = f a(y')dy' , y> , (2.7)

be the strain energy per unit reference volume for the material of the bar. Consider the

restriction of the motion to the time interval [t1 , t2 ] and to the piece of the bar that occupies the

interval [xl,x 2] in the reference configuration. Suppose that y and v are smooth on [x ,x2 ]×[tl,t 21

except at the moving discontinuity x = s(t). Let E(t) and D(t) denote, respectively, the total

mechanical energy and the rate of dissipation of mechanical energy at time t associated with the

piece of the bar under consideration:

x 2 2E~)=f [Wyxt) 1 v2 (x,t)] dx, (2.8)

x1

D(t) = a(x 2,t)v(x 2,t) - a(x l t)v(x l t) - E (t). (2.9)

A direct calculation using (2.3)-(2.9) establishes the following alternative expression for the

dissipation rate in terms of local quantities at the strain discontinuity:

D(t) = f(t)s(t) , (2.10)

where f(t) is given by
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A +
fT = ) f --- (y) d7-y [ + ()(- ),(2.11)

.f 2

+
and y(t) = y(s(t)±,t) are the strains on the two sides of the discontinuity. If there is no jump in

strain at x = s(t), then (2.11) shows that f = 0, and so D vanishes. Since (2.9) and (2.10) give

aT(x 2,t)v(x 2,t) - G(X1 ,t)v(x 1,t) + (- f(t))s(t) = E (t) , (2.12)

we may view -f(t)s(t) as the rate of work done on the bar by the moving discontinuity, and thus

speak of f as the driving traction - i.e. the driving force per unit cross-sectional area - acting on

the discontinuity. According to (2.11), the driving traction f may be interpreted geometrically as

the difference between the area under the stress-strain curve between the strains j and y and the

area of the trapezoid determined by ', Y, e(j,), and a(l).

In order to guarantee that the instantaneous dissipation rate associated with every piece of

the bar is non-negative during the motion, one must enforce the additional requirement

f(t) s(t) 0 (2.13)

at each strain discontinuity and at all times. If the material is viewed as being thermoelastic, and

if we make the assumption - however unrealistic - that the motion takes place isothermally at a

temperature 0, then one can show that the rate of entropy production at time t associated with

the piece [xlx2] of the bar is D(t)/0. Thus, under these conditions, the restriction (2.13), with f

given by (2.11), is a consequence of the second law of thermodynamics; it is equivalent to the

assertion that the entropy of a particle cannot decrease as the particle crosses a strain discont-

inuity. We refer to (2.13) as the entropy admissibility requirement.
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3. Trilinear material. Local properties of phase boundaries and shock waves. In

order to allow for the possible occurence of stationary phase boundaries in a bar, one considers

a material whose stress response function a(y) at first increases monotonically, then decreases,

and finally increases again as y increases from the value y = -1. In the present study we restrict
A

attention to the special case in which c(y) has the trilinear form shown in Figure 1. Although

some of the results of this paper apply only for this trilinear material, the discussion in the

present section, as well as certain subsequent results, can be generalized to any rising-falling-

rising stress-strain curve.

We shall say that a particle of the bar labeled by x is in phase 1, 2 or 3 at time t according

to whether the strain y(x,t) lies in the interval (-1, yMJ, (y'M' ym) or [ym, -), respectively, corresp-

onding to the three branches of the stress-strain curve in Figure 1. In addition, a strain discont-

inuity will be said to be of p,q-type if y is a phase-p strain and y is a phase-q strain. If p=q, we

call the discontinuity a shock wave, while if p~q we refer to it as a phase boundary.

At a moving discontinuity x=s(t), the jump conditions (2.5), (2.6) imply

A +

*2 ,Cp-a(Y) (3.1)

A + A - + - + -2
[(Y)- (Y)I(Y ) = P (+ -v) (3.2)

The right side of (3.1) must necessarily be non-negative for any pair of strains y, y that can occur

at a strain jump. Conversely, if Yv y are numbers in (- 1, -0) such that the right side of (3.1) is non-

negative, then it is possible to find numbers v-, v and s such that the pair of jump conditions (2.5),

(2.6) are satisfied.
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The requirement (3.1) rules out shock waves of 2,2-type. In addition, for the trilinear

material, it shows that shock waves of 1,1-type and 3,3-type have constant propagation speeds

±C and ±c3, respectively, where

c, = (L1/P)l, c3 = (Ip) 2 < C(33)

At a shock wave of either 1,1- or 3,3-type, the linearity of the stress response function a(y)

between the strains y and y allows one to infer from (2.11) that the driving traction f vanishes. In

particular, the entropy admissibility requirement (2.13) is automatically satisfied at such a shock

wave.

Turning next to phase boundaries, we suppose that y and y belong to different phases.

Since we shall not consider cases in which either y or y is in phase 2 (the "unstable phase"), we

may without loss of generality take -, to be in phase l and y in phase 3, so that the associated

discontinuity is a 1,3-phase boundary. When specialized to this case and to the trilinear material

of Figure 1, (3.1) becomes

2+ 2-•.2 C3 "Cl y

s + (3.4)

+++

In the j', y-plane, the set of pairs (y-, y) for which y' is in phase 1, y is in phase 3 and the right side

of (3.4) is non-negative is represented by the region F shown partly hatched and partly shaded in

Figure 2. At any point on the boundary segment BC, the numerator in (3.4) vanishes, so that

s = 0; the corresponding phase boundary is thus instantaneously stationary. The point M in the

figure corresponds to the so-called Maxwell state, which is the special equilibrium phase mixture

for which = ,Y %. 3 , where Co = (FMam)1/2 is the stress for which the hatched areas

in Figure 1 are equal.
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The driving traction f acting on a phase boundary of 1,3-type can be found from (2.11)

and the explicit form of a(y) for the trilinear material:

f = fky, 7)= 2 g 4)Yym-7). (3.5)

It follows that the driving traction vanishes on the hyperbola 77 =YM in the y, y-plane . Thus

according to (2.10), points in F that lie on this hyperbola correspond to values of y and y for

which the associated phase boundary x = s(t) propagates without dissipation. Note that the

Maxwell point M lies on this hyperbola. Given any point (7, Y)e F, equation (3.4) determines the

corresponding value of s . If (y, y) lies off the hyperbola, then f # 0, so that the entropy

admissibility requirement (2.13) determines the sign of s; see Figure 2. For points on the

hyperbola, one has f = 0, so that the sign of s is not determined by (2.13), and propagation in

either direction is possible.

With the help of (3.4) and (2.13), one can show (as in [1]) that the velocity s of a

1,3-phase boundary necessarily lies in the range

-c 3 <S <c, , (3.6)

where

2 2 1/2

c= (C1  3  < c (3.7)
1 +7M3 C I

It is helpful to note that pc2 is the slope of the chord joining the point (-1, 1(-l)) to (ym, m) in

the y, a-plane (Figure 1). The propagation speed Isl is said to be subsonic if Isl < c3 . By (3.4),
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this occurs only for those points in the region F of Figure 2 for which 7 > 0. For supersonic

motion of the phase boundary, one has y, < 0, so that part of the bar is in compression.

We now use (3.4) and (3.5) to map the region F of the y, y-plane into the f-plane. Each

point (/, ') that does not lie on BC (Figure 2) is carried to two points (s, f) and (-s, f) in the

s, f-plane; if f * 0, only one of these satisfies the entropy admissibility requirement (2.13). If

f = 0, the point (y, ) lies on the hyperbola; such a point maps to a pair of admissible points

(±s, 0) in the s, f-plane, with 0 < s < c3 . All points on BC map to admissible points on the f-axis.

All points in F that lie on -y = 0 map to the same pair of points (±c3, f0 ), where the constant f0 is

given by

f (91- g3) YmYM > 0. (3.8)

Figure 3 shows the admissible image of F in the s, f-plane. It will be useful for later purposes to

note from (3.4), (3.5) and Figure 2 that the boundary curves B'R' and C'V' in Figure 3 are

characterized by

f =fM(S) -f0 (1 - 1/p(s)), 0 <s < c3, (3.9)

f ff(s) - 0 (1- (s)), -c3 < s < 0, (3.10)

respectively, where

2 S2
I /M C <s< (3.11)

P'' = 2 2 Y'm  3
3 -
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4. The maximally dissipative kinetic relation. As was shown in [1] and will be

reviewed briefly in Section 5 of the present paper, the Riemann problem for the trilinear material

associated with the field equations (2.3), (2.4), the jump conditions (2.5), (2.6) and the entropy

inequality (2.13) suffers from a massive failure of uniqueness of solution. We view this

nonuniqueness as resulting from a constitutive deficiency in the theory reflecting the need for

additional information characterizing the initiation and evolution of phase boundaries. The

physical basis of phase transitions in solids, as described in the materials science literature,

involves both a nucleation criterion governing the initiation of the transition and a kinetic

relation controlling the rate at which it proceeds; see, for example, [5, 23]. Simple continuum-

mechanical implementations of these notions were discussed in [ 1, 6, 71. In particular, it was

shown in [ 1 ] that, as long as all phase boundaries pro, .gate subsonically, a nucleation criterion

and a kinetic relation can be imposed in Riemann problems, and together they single out unique

solutions that fulfill the entropy admissibility requirement.

Our attention in the present study will be focussed on two particular kinetic relations; we

shall not address the issue of nucleation here. We proceed as in [1] and assume that, if the phase

boundary velocity s is subsonic, there is a function Cp determined by the material that relates the

driving traction f to the propagation speed s, the latter being a measure of the rate at which the

phase transition takes place. Thus we take

f=qP(s) , -c3 < s<c 3 . (4.1)

Alternatively, if (p is monotonic on (-c3, c3), one can write this in the inverse form,

f= V(f), _o<f <f 0 ' (4.2)
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where the constant f0 is given by (3.8) and the function V is the inverse of (p. Because of the

entropy admissibility requirement (2.13), cp and V must satisfy

(p(s)s>0 for-c 3 < V(f)f>0 for-o<f<f. (4.3)

The curve in the s, f-plane described by (4.1) or (4.2) is required to lie in the hatched region

shown in Figure 3.

+

Since the driving traction f(t) is determined through (2.11) by the strains y(t) at the

particles on either side of the phase boundary, the statement of the kinetic relation (4.1) involves
+

only the quantities y(t) and s(t) at the phase boundary and is thus purely local in character. The

statement (4.1) is also problem-independent. Moreover, a relation of the form (4.1) can be

generalized to three-dimensional thermomechanical processes in thermoelastic materials, as

shown in [7].

The basic principles of continuum theory do not impose any further restrictions on, or

provide examples of, particular kinetic response functions p or V. These must be supplied by

appropriate constitutive modeling. For example, the kinetic response function given by

V(f) = k sinh (f/K), where K and k are constants, can be motivated by arguments based on

thermal activation theory; the latter theory is discussed, for example, in Chapter 1 of [23]. The

choice (p(s) _= 0 for the kinetic response function would result if one were to require all motions

of the bar to be dissipation-free. At the other extreme, there is a kinetic response function that

corresponds to a definite notion of maximum dissipation, as we shall now show.

To this end, we first extend the definitions (3.9), (3.10) of fM(s) and fm(S) to the interval

(-c3, c3) by setting fM(s) = 0 for -c3 < s < 0 and f(s) = 0 for 0 < s < c3 . In terms of these
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extensions fM and fm the upper and lower boundaries of the hatched regions in the s, f-plane of

Figure 3 are f=fM(s) and f=f (s), -c3 < s < c3 * We shall say that a subsonically moving phase

boundary that separates phase 1 on the left from phase 3 on the right is maximally dissipative if

at each instant t,

f(t)s(t) > f.s(t) for all f. such that f (s(t)) _< f. _ fM (s(t)). (4.4)

Thus the local dissipation rate at a maximally dissipative phase boundary is at least as great as

the dissipation rate during any "virtual motion" of that discontinuity whose speed s(t) at time t

coincides with that of the actual motion, but for which the instantaneous virtual driving traction

f. may take on any value in the range allowed by the given value of s(t). This notion of

maximum dissipation is closely related to the concept of maximum dissipation - or maximum

plastic work - utilized in the constitutive description of rate-independent elastic-plastic solids

[8, 9].

It follows from (4.4) that if a phase boundary is maximally dissipative, then the driving
traction f(t) at time t must coincide with f (s(t)) if -c3 < s(t) < 0 and with fM(s(t)) if 0 < s(t) < c3

If s(t) = 0, (4.4) imposes no restriction on the current driving traction, so that f(t) may take any

value in the interval [f(0), fM( 0 )] that corresponds to the range of possible values of driving

traction f for equilibrium phase boundaries. Summarizing, (4.4) holds if and only if

f(t) = fm(s(t)) if -c3 < s(t) < 0,

f (0) < f(t) < fM(0) if s(t) = 0 , (4.5)

f(t) = fM( s(t)) if 0 < s(t) < c3 .

In the s, f-plane, the points (s(t), f(t)) permitted by the maximum dissipation rate postulate (4.4)
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thus lie on the curve C shown in Figure 4. Conversely, every point on this curve corresponds to

a pair (s(t), f(t)) permitted by (4.4). The curve C, which coincides with the boundary curve

V'C'T'B'R' in Figure 3, is reminiscent in some respects of rigid-plastic response with

work-hardening or of the force-velocity relationship associated with friction. The particular

kinetic relation that corresponds to C is best described in the form (4.2); with the help of

(3.9)-(3.11), one finds that the associated kinetic response function V(f) is given by

( f(0)- f )1/2 - <ffm0

-3( (1 _ f "ym)f 0 _ f  ' M

V(f)= 0, fm (0)<_ffM(0) (4.6)

1 ( f '- f M ( O ) ) 1 / 2 f M O < f _ f o

l(mjM_ 1)f 0 
+ f  ' - 0

where f0 , f ( ) and fM(s) are given by (3.8)-(3.10).

Some insight into the maximally dissipative kinetic relation may be obtained by

observing from (3.4), (3.5) and (3.9)-(3.11) that (4.5) implies

Yt)=yM if -c3 < s(t) < 0 ' l (4.7)

Y(t)=Ym if 0<s(t)<c 3 .(

When s > 0, the 1,3-phase boundary advances into material that is in phase 3 and so particles of

the bar are transforming from phase 3 (the "parent phase") to phase 1 (the "product phase"); thus,

according to (4.7)2' parent phase particles which are on the verge of undergoing this transform-

ation have a strain y(t) = ym" Similarly, (4.7), shows that during the reverse transformation from

phase I to phase 3, particles in the parent phase that are about to transform have a strain
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(t) = . Thus, in terms of the stress response described in Figure 1, a particle can cross over

from the first branch of the stress-strain curve to the third branch only at the local maximum

y = ym' while the reverse transition can only occur at the local minimum Ym"

5. A Riemann problem. We now formulate a Riemann problem for the field equations

and jump conditions (2.3)-(2.6) and determine all piecewise smooth solutions to it that are

invariant under a scale change x -> kx, t -> kt. The entropy admissibility condition is imposed

ab initio, but we postpone enforcement of the maximally dissipative kinetic relation until the

next section. We thus seek all scale-invariant weak solutions of the differential equations (2.3),

(2.4) on the upper half of the x,t-plane that satisfy the entropy admissibility requirement and the

following initial conditions:

J 0+) 'YL' -00<x<O, VL' " < x < 0=v (x,O0+) = L(5.1)

1 Y'R' 0 <x <+o, I v R, 0 <X<<+C".

Here yL' YR' VL and vR are given constants with yL in phase 1 and yR in phase 3:

YLE  (- I'TM]' Y(R Ei  [ ' , ) ;  (5.2)

we say this Riemann problem is of 1,3-type. For the trilinear material, a detailed analysis of

Riemann problems of this type as well as of types 1,1 and 3,3 may be found in [1]. Here we

simply summarize without proof those results from ( II that are relevant for our present purposes.

As argued in [1], solutions of the Riemann problem that are scale-invariant must have the

form:

x, t) = y., v(x, t) = v., s.jt < x < s. It , j =0, 1,...,.N, (5.3)
J J J1
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where yi, v., s. and N are constants, with N a positive integer, and y0 = yL' YN = YR' v0 =VL'

VN = V' s - - =N+ - + o; see Figure5. The y's are required to satisfy y. > -1 forj =0...,N

and y. y. for j = 0,...,N-1. In the space-time field given by (5.3), there are N strain
J J+1

discontinuities on lines x = s.t ; they may be shock waves or phase boundaries. For the trilinearJ

material, fans cannot occur. If x = s.t is a shock wave, then s. must take one of the four valuesJ J

±c1, ±c3. We seek solutions of the Riemann problem in the class of all functions of the form

described above.

At each discontinuity, the jump conditions (2.5), (2.6) must be satisfied, so that

J J j- j J-l j =l... N, (5.4)

(Y)=- P S. (v.- v.)

where a is the stress response function for the trilinear material (Figure 1). If f. denotes the
J

driving traction on the discontinuity at x = s.t, the entropy admissibility condition (2.13) requires

that

f.s. > 0, j= 1,...,N . (5.5)J J

An admissible solution of the Riemann problem is a pair y(x,t), v(x,t) of the form (5.3) such that

(5.4), (5.5) hold.

Let (yv) be an admissible solution of the 1,3-Riemann problem described above. Then

the following are immediate consequences of the results proved in [11]:
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(i) no strain yj in (5.3) belongs to phase 2;

(ii) (y-, v) involves precisely one phase boundary;

(iii) if the phase boundary travels at subsonic speed, then N=3 and the

solution involves two shock waves as well; in this case sl = -Cl'

s2 =S, s3 = +C3' with -c3 < ; < c3 ; see Figure 6a,;

(iv) if the phase boundary travels at a supersonic speed, then N=2 and the

solution involves one shock wave as well; in this case S = -CI and

$2 = s > c3 ; see Figure 6b.

Thus the structure of the solution to the present Riemann problem necessarily has one of the two

forms shown in Figure 6.

For the supersonic case of Figure 6b, we have shown in [11] that no kinetic relation can be

prescribed at the phase boundary. Since our present purpose is to introduce and discuss various

kinetic relations, we restrict attention from here on to the subsonic case of Figure 6a. In con-

formity with the result in (iii) above, we thus take N=3 and seek y, v in the form:

L' vL -oo< x <-ct,

y, v, -CIt< x <st,
y, v = 1(5.6)

,v, st < x < c3t,

Y VR c 3Rt < x < ,

where 7, ,, , + and s are unknowns, with

0 < Y , + S < c3 <c 3 " (5.7)
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The jump conditions (5.4) lead to four equations involving these five unknowns, and from them,

one can determine y, v, y and v, in terms of s:

3+s c1 -s
1 33

c +s c3 s (5.8)

c3 +s + c1 -s

'VL-ClYL + c+ Clh' vvR+c3 YR- c c Jh

where we have set

h =(c 1 L + c3 R + vR- vL)/(cI+ c 3 ) (5.9)

By using (5.8), the restrictions (5.7) can be reduced to

c c< I+s -c3  (5.10)

c I-s c 3+S

Note that (5.10) shows that h is necessarily positive in the present subsonic case. In the

s, h-plane of Figure 7, the inequalities (5.10) describe the region on and between the top and

bottom curves C1 and C2 , whose respective equations are h = YM(cl + s)/(c3 + s) and

h=Ym(C3 -s)/(c - s), s < c3. The special ordinates hm, h0 and hM appearing in Figure 7

are given by

-1/2 -/02hm =  ( 913 ' h 0 = Gr0(Ptl43)-2 , hM = 'M (9t13) - (5.11)
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Let initial data be given such that h in (5.9) is positive. For each set of such initial data,

Figure 7 shows that there is a range of s in which (5.10) hold. Keeping the initial data - and

therefore h - fixed, define y, y, v and v by (5.8), x,t) and v(x,t) by (5.6)for each s in the

allowable range. For the given initial data, the set of all such pairs y, v so constructed comprises

a 1-parameter family (parameter s) of solutions to the corresponding Riemann problem, in each

of which there is a phase boundary moving at subsonic velocity s. Given the initial data and a

value of s in the appropriate range, there is exactly one solution to the Riemann problem and one

corresponding point (s, h) on or between the curves C1 and C2 in the s, h-plane.

We now determine which among the one-parameter family of solutions corresponding to

given initial data with h > 0 are admissible according to the entropy requirement (5.5). Recall

first from Section 3 that the driving traction on each of the two shock waves is zero, so that they

automatically satisfy the entropy admissibility requirement. On the other hand, the driving

traction f on the phase boundary is given by (3.5) with y, y given by (5.8)1,2:

f - g 3 )  Y M _ (c3 + S) (c- h 2 }. (5.12)
2 (c3 - s) (c 1 + s)

With this f, the entropy admissibility condition (5.5) reduces to

(c3 + s)(c-s) 2
YMYM h2 s _> 0. (5.13)(c 3 - s)(c I + s)

Let [l stand for the set of all pairs (s, h) that are consistent with both inequalities (5.10)

and (5.13); rl thus corresponds to the union of the two hatched regions in Figure 7. The curve M

that forms part of the boundary of F is the locus of points (s, h) for which the contents of the

braces in (5.13) vanish, and thus on which f = 0. For each h > 0, let f(h) be the corresponding
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"horizontal" cross-section of 1- (Figure 7):

2(h) = {(s,h) I h > 0 fixed, (s,h) E HI. (5.14)

Let initial data be given and fixed, and suppose the associated h is positive; points in the set 0(h)

then correspond one-to-one to entropically admissible solutions of the associated 1,3-Riemann

problem, so that such points may be used to label the one-parameter family of admissible

solutions corresponding to the given data. Note that, for every h > 0, one end-point of Qi(h) lies

on the "Maxwell curve" M; thus for each set of initial data leading to a positive h, there is one

solution of the associated Riemann problem with f = 0 at the phase boundary, which therefore

propagates without dissipation.

Since for each h * h0 the set 92(h) is a line segment, it is clear that - as expected - the

entropy admissibility requirement does not deliver uniqueness of solution of the Riemann

problem. Because Q2(h 0 ) contains only a single point, those special initial data that give rise to

h = h0 lead to a Riemann problem that has a unique admissible solution. This solution has a

stationary phase boundary (s = 0) bearing zero driving traction, and it tends for large time to an

equilibrium mixture of phases I and 3 in which the bar is at the Maxwell stress (T0. From Figure

7 it is clear that Q)(h) includes points with s = 0 for all values of h in the interval [hm , hMI. For

initial data whose h is in this interval but differs from h0 , the solution with s = 0 gives rise to a

long-time mixed-phase equilibrium that is not a Maxwell state ( f * 0) and hence is metastable.

We showed in [1] that, for given initial data with h > 0, a kinetic relation f = 9(s) will

pick out a unique admissible solution to the Riemann problem from among those corresponding

to points in K2(h), provided 9 satisfies certain conditions. We turn now to the implications for the

1,3-Riemann problem of the maximally dissipative kinetic relation constructed in Section 4.
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6. The maximally dissipative kinetic relation and the Riemann problem. As shown

in the preceding section, for initial data with h > 0, the 1,3-Riemann problem has a one -

parameter family of admissible solutions (5.6), (5.8), each with a subsonically moving phase

boundary. We now seek to determine which among this continuum of solutions conforms to the

maximally dissipative kinetic relation (4.2), (4.6).

Substituting (5.12) into (4.6) and then putting the result into (4.2) allows one to solve for

sin terms of h:

c( hm -h fr0<ht-hCl1 (!,mLh) for O<h_<h ,
hh hM (.1

s= 0 for hm h~ hM (6.1)

-c3(-) for hM!h<o.7M

Let initial data with positive h be given; (6.1) then determines a unique value of s such that

(s, h)E Q)(h); once s is known, (5.8) yield ' V-, -,, , so that y(x,t), v(x,t) are fully determined

through (5.3). The result is the unique solution of the 1,3-Riemann problem that is consistent

with the maximally dissipative kinetic relation, and of course with the entropy admissibility

requirement as well. Solutions picked out by this kinetic relation for various sets of initial data

can be described graphically in the s, h-plane; they correspond to points on the curve K, shown

bold in Figure 8, whose equation is (6.1) and which is the image in the s, h-plane of the kinetic

curve C in the s, f-plane (Figure 4). Note that this curve coincides with a portion of the boundary

of the hatched set rI. One sees from the graph that, for initial data whose associated h lies in the

interval [hm, hM]? the maximally dissipative kinetic relation always picks the solution with

stationary phase boundary; for this solution, the long-time limit is an equilibrium mixture of

phases l and 3. IfO <h < hm , the kinetic relation picks a solution with s > 0, so that all particles
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of the bar are ultimately in phase 1; if h > hM , the entire bar is ultimately in phase 3. For values

of h in (0, h0), this kinetic relation picks the solution that corresponds to the left boundary point

of 0(h), while for h > h0, it picks the right boundary point.

7. Solution of the Riemann problem with largest dissipation rate. We now return to

the Riemann problem and its admissible subsonic solutions as constructed in Section 5 prior to

the imposition of the maximally dissipative kinetic relation. For fixed initial data with a positive

value of h, we seek from among the one-parameter family of solutions cc,;rcsponding to Q(h)

that solution whose dissipation rate is greatest.

For each solution in this family, dissipation arises only from the moving phase boundary.

Thus the dissipation rate at time t associated with any piece [x1, x2]J of the bar that includes

x = s t in its interior is found from (2.10) and (5.12) to be given by

D d(s; h) I c3+sh 2  s, (s,h)E-; (7.1)D ds;h)=2 (! (1 I 3) mM" -s) (c + s)
(3 1

D depends on s and the initial data, but is independent of t. We speak of d(s, h) as the dissipation

rate associated with the solution of the Riemann problem that corresponds to a specified s and

given data. By (5.13), d(s; h) _ 0 for all (s, h)E II. For every h > 0, let s max(h) be such that

d(s max(h); h) = max d(s; h). (7.2)
(S, h)E Q (h)

It can be shown that, for each h > 0, there is exactly one smax(h). Choosing s = s max(h) picks out

the admissible solution that dissipates most rapidly in comparison with all other admissible

solutions that are available for the given initial data.
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Let J be the curve in the s, h-plane that corresponds to such solutions with greatest

dissipation rate for various sets of initial data:

J = { (s, h)l is = Smax(h),h>O}. (7.3)

We now show that, at least at some of its points, the curve J does not coincide with the curve K

(Figure 8) determined by the maximally dissipative kinetic relation of Section 4. For any h # h0

in the interval [hm, hM1, one has s = 0 at one end-point of the segment Q(h) (Figure 7), so from

(7.1), d = 0 there. Similarly, the other end-point of Q(h) lies on the Maxwell curve M where

f = 0, so d vanishes there as well. At interior points of 0(h), d is positive. It follows that, for hm

< h < hM, h # h0 , tile maximizing point (S max(h), h) for d(s; h) lies in the interior of the line

segment Q(h) and therefore in particular not on the h-axis. In contrast, for this same range of

values of h, all points (s, h) on the curve K lie on the ', axi., Thus the curves K and J do not

coincide everywhere.

More detailed information concerning the curve J can be found by investigating the locus

in the s, h-plane of horizontal tangents of d(s; h) as a function of s for fixed h. To this end,

define

A(s (c2 s2 )(c2 - s2 )+2(c -c)S(c +s 2) , -c <<- c (7.4)
131 33 1 3 (34)

It is easy to verify that A(-c 3) < 0, A(s) > 0 for 0 < s <c 3, and that A(s) increases monotonically

with s on the interval [-c3, 01 . Thus there is a unique number s. in (-c3, 0) such that A(s,) = 0,

A(s) < 0 for -c3 : s < s,, and A(s) > 0 for s, < s < c3 . Direct calculation shows that, if (s, h) is a

point that lies on the locus of horizontal tangents of d, then necessarily A(s) > 0, so that

<s < c3 ; moreover, on this locus, h and s are related by
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I (I I + We S)

h = H(s)-=_h 0 * 1/ s)c* s)C3 75

It can be shown that H(s) decreases as s increases on (s*, c3) and that only part of the curve J.

represented by (7.5) lies in 11. The locus J of maxima of d(s; h) thus consists of the union of

that portion of J, th,,t lies in 1I together with appropriate parts of the boundary curves CIand C2 ,

so that the curves J and K do coincide in part. Figure 9 shows a representative instance of the

curve J as computed numerically for a particular set of values of the material parameters.

Since h varies monotonically with s on J, selecting the solution to a given 1,3-Riemann

problem that maximizes d(s; h) over f0(h) for the appropriate h represents a criterion that does

indeed single out a unique admissible solution for each set of initial data with a positive h. Since

the curves J (Figure 9) and K (Figure 8) are not the same, this selection criterion differs from the

one furnished by the maximally dissipative kinetic relation of Section 4. Indeed, in the latter

case, (4.4) shows that maximization of the dissipation rate f s is carried out for fixed s, i.e., on

vertical cross-sections of l, while in the criterion leading to J, maximization takes place for

fixed h, and therefore on horizontal cross-sections of Fl.

The selection criterion described in the present section appears to be closely related to the

"entropy rate shock admissibility criterion" as stated by Dafermos on p. 56 of [17]. In the

context of the isothermal trilinear elastic bar and in our terminology, a motion would be

considered admissible by this criterion if each of its propagating strain discontinuities fulfills the

following condition at each time instant t,: let y(t.), v(t.), y (t.) and v(t.) be the instantaneous

strains and particle velocities at a discontinuity, and let D. be the associated instantaneous local

dissipation rate; let t = t - t, be a new time; then no solution of the Riemann problem in the

x, r-plane with y(t.), v (t,), y- (t) and v,(t.) as initial data has a dissipation rate greater than D,
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As we understand this criterion, it does not impose what we have called the entropy admissibility

requirement (2.13) on the solutions of the Riemann problem that compete in the process of

maximizing the dissipation rate. If this requirement were imposed, then the maximization

process associated with the resulting modified version of Dafermos's criterion, when applied to a

discontinuity of 1,3-type, would seem to coincide with the "horizontal" maximization scheme

described in detail above. Moreover, the selection process associated with this "modified

entropy rate shock admissibility criterion" can be characterized by a kinetic relation of the form

f = (P(s); the appropriate (p can be found by mapping the curve J from the s, h-plane to the

s, f- plane with the hclp of (5.12) and (7.5). For a particular set of material parameters, the

corresponding kinetic response curve B in the s, f-plane is shown in Figure 10.

The distinction between the sets of competing solutions to the Riemann problem that

enter the modified and unmodified versions of the entropy rate shock admissibility criterion is

illustrated by the counterpart in the present context of a result of Hattori [ 18]. For the van der

Waals fluid, Hattori shows that the Maxwell equilibrium mixture of what we would call phases 1

and 3 is admissible according to the entropy rate criterion of Dafermos. In our setting, reference

to Figure 7 shows that a horizontal line through the "Maxwell point" s = 0, h = h0 would intersect

the set 17 of entropically admissible points in the single point (0, h0). In contrast, the intersection

of this same line with the set of points corresponding to all solutions to the Riemann problem of

the form (5.6) is the horizontal line segment through (0, h0) connecting C2 to C1 . Each solution

of the form (5.6) that corresponds to a point other than (0, h0) on this line segment involves a

negative dissipation rate and is thus inadmissible by the entropy requirement (2.13). Thus the se!

of com etitors appropriate to the modified version of the entropy rate criterion contains only the

Maxwell equilibrium solution. In contrast, among the continuum of competitors entering the

unmodified version of the criterion, all except the Maxwell equilibrium solution are inadmissible

according to the entropy inequality (2.13). Since the dissipation rate associated with the
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Maxwell equilibrium phase mixture is zero, this state can represent that solution of the Riemann

problem whose dissipation rate is greatest only if all competitors are inadmissible according to

the second law of thermodynamics as manifested by (2.13). The special initial data for which

h = h0 correspond to the exceptional circumstance in which the entropy admissibility

requirement alone is sufficient for uniqueness of scale-invariant solutions to the Riemann

problem for the trilinear material.

More generally, if the entropy inequality is not imposed uipon the competitor, entering

Dafermos's shock admissibility criterion, then in the present setting, the required maximization

must be carried out over all solutions of the form (5.3) that satisfy the given initial conditions,

and not merely over the set of solutions of the simpler form (5.6) involving only a single phase

boundary. The entropy admissibility requirement plays a major role in the arguments used in [ 1]

to establish the results (i) - (iv) stated in Section 5. It is these results in turn that make it possible

to restrict attention to solutions of the form (5.6) in the 1, 3-Riemann problem for the trilinear

material.

Combining the conclusions reached in the present paper with those established in [22],

we may assert that, at least for the trilinear material, a modified version of the entropy rate shock

admissibility criterion of [ 17], a criterion of the viscosity-capillarity type [10-15], and a

maximally dissipative kinetic relation motivated by the notion of maximum plastic work can all

be subsumed under the class of phase transitions whose kinetics are characterized by relations of

the form f = (p(s) between driving traction and pt tse boundary velocity.
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